
Translating Mobile App
Security Lessons
to the Flutter Stack

+

1

Who am I?
Samuel Hopstock
Software Engineer at Guardsquare, Munich

• Working on:
• App protection: iXGuard
• App analysis: AppSweep (iOS and Flutter team)

• Previously worked on:
• AppSweep Android

2

Flutter app structure
import 'package:flutter/material.dart';

void main() => runApp(const MyApp());

class MyApp extends StatelessWidget {
 const MyApp({super.key});

 @override
 Widget build(BuildContext context) {
 return MaterialApp(
 home: Scaffold(
 appBar: AppBar(title: const Text('Hello Flutter')),
 body: const Center(
 child: Text(

 '🦋 Beautiful UIs in one codebase!',

 style: TextStyle(fontSize: 18),
),
),
),
);
 }
}

https://docs.flutter.dev/resources/architectural-overview#anatomy-of-an-app
3

Interaction with native APIs
// Dart side
const channel = MethodChannel('foo');
final greeting = await channel.invokeMethod('bar', 'world') as String;
print(greeting);

// Android (Kotlin)
val channel = MethodChannel(flutterView, "foo")
channel.setMethodCallHandler { call, result ->
 when (call.method) {
 "bar" -> result.success("Hello, ${call.arguments}")
 else -> result.notImplemented()
 }
}

// iOS (Swift)
let channel = FlutterMethodChannel(name: "foo", binaryMessenger: flutterView)
channel.setMethodCallHandler {
 (call: FlutterMethodCall, result: FlutterResult) -> Void in
 switch (call.method) {
 case "bar": result("Hello, \(call.arguments as! String)")
 default: result(FlutterMethodNotImplemented)
 }
}

https://docs.flutter.dev/resources/architectural-overview#platform-channels

4

Security misconceptions

5

Security misconceptions
• Native binaries = safe binaries

5

Security misconceptions
• Native binaries = safe binaries
• No Dart decompiler = no threat

5

Security misconceptions
• Native binaries = safe binaries
• No Dart decompiler = no threat
• --obfuscate = real protection

5

Security misconceptions
• Native binaries = safe binaries
• No Dart decompiler = no threat
• --obfuscate = real protection
• Cross-platform = more abstractions = less vulnerabilities

5

Surface-level findings

6

// sample.dart

void verySecret() {

 print("My cool API key: AIzaSyDaGmWKa4JsXZ-HjGw7ISLn_3namBGewQe");

}

void main() {

 verySecret();

}

Verbose logging

7

Hardcoded secrets
$> strings libapp.so

_kDartVmSnapshotInstructions
_kDartIsolateSnapshotInstructions
_kDartVmSnapshotData
_kDartIsolateSnapshotData
_kDartSnapshotBuildId
[...]
My cool API key: AIzaSyDaGmWKa4JsXZ-HjGw7ISLn_3namBGewQe
[...]
.eh_frame
.dynstr
.dynsym
.hash
.dynamic

8

Symbol leakage

9

Symbol leakage

$> nm libapp.so

9

Symbol leakage

$> nm libapp.so
libapp.so: no symbols

9

Symbol leakage

$> nm libapp.so
libapp.so: no symbols

🤔

9

Symbol leakage
$> strings libapp.so

[...]
<optimized out>
Handle
MonomorphicSmiableCall
ClosureData
dyn:implicit:call
_NativeFinalizer
_FunctionType
Uint64List
[...]
verySecret
main
print
[...]

10

The Dart object pool

11

The Dart object pool

$> python blutter.py --dart-version “3.9.2_android_arm64” libapp.so out

libapp is loaded at 0x1044f4000
Dart heap at 0x300000000
Analyzing the application
Dumping Object Pool
Generating application assemblies
Generating Frida script

12

The Dart object pool

out
├── asm

│ └── file:
│ └── Users
│ └── samuel
│ └── flutter
│ └── bsides_talk
│ └── low-effort
│ └── low-effort.dart
├── blutter_frida.js

├── ida_script/

├── objs.txt

└── pp.txt

13

// low-effort.dart
// class id: 1048595, size: 0x8
class :: {

 [closure] static void main(dynamic) {
 // ** addr: 0x9aa24, size: 0x30
 // 0x9aa24: EnterFrame
 // 0x9aa24: stp fp, lr, [SP, #-0x10]!
 // 0x9aa28: mov fp, SP
 // [...]
 }
 static void verySecret() {
 // ** addr: 0x9aa54, size: 0x30
 // 0x9aa54: EnterFrame
 // 0x9aa54: stp fp, lr, [SP, #-0x10]!
 // 0x9aa58: mov fp, SP
 // [...]
 }
}

The Dart object pool

out
├── asm

│ └── file:
│ └── Users
│ └── samuel
│ └── flutter
│ └── bsides_talk
│ └── low-effort
│ └── low-effort.dart
├── blutter_frida.js

├── ida_script/

├── objs.txt

└── pp.txt

13

// low-effort.dart
// class id: 1048595, size: 0x8
class :: {

 [closure] static void main(dynamic) {
 // ** addr: 0x9aa24, size: 0x30
 // 0x9aa24: EnterFrame
 // 0x9aa24: stp fp, lr, [SP, #-0x10]!
 // 0x9aa28: mov fp, SP
 // [...]
 }
 static void verySecret() {
 // ** addr: 0x9aa54, size: 0x30
 // 0x9aa54: EnterFrame
 // 0x9aa54: stp fp, lr, [SP, #-0x10]!
 // 0x9aa58: mov fp, SP
 // [...]
 }
}

The Dart object pool

14

The Dart object pool

15

The Dart object pool

16

The Dart object pool

17

The Dart object pool

17

$> grep “0x1cb8” out/pp.txt

The Dart object pool

17

$> grep “0x1cb8” out/pp.txt
[pp+0x1cb8] String: "My cool API key: AIzaSyDaGmWKa4JsXZ-HjGw7ISLn_3namBGewQe"

🥳

Insecure TLS validation
import 'dart:io';
import 'package:http/io_client.dart';

class InsecureHttpOverrides extends HttpOverrides {
 @override
 HttpClient createHttpClient(final SecurityContext? context) {
 return super.createHttpClient(context)
 ..badCertificateCallback = (X509Certificate cert, String host, int port) => true;
 }
}

void main() async {
 HttpOverrides.global = new InsecureHttpOverrides();
 var response = await IOClient(HttpClient()).get(Uri.parse('https://self-signed.badssl.com/'));
 print(response.body);
}

18

Insecure TLS validation

19

Insecure TLS validation
• Why do you need non-standard behavior?

19

Insecure TLS validation
• Why do you need non-standard behavior?
• Self-signed certificates, custom CAs etc? 
→ Really necessary?

19

Insecure TLS validation
• Why do you need non-standard behavior?
• Self-signed certificates, custom CAs etc? 
→ Really necessary?

• Use well-tested libraries instead of custom code

19

Injection vulnerabilities
import 'dart:io';
import 'package:sqflite_common/sqlite_api.dart';

void updateTask(Database db, Int taskId, String fileName) async {
 await db.execute(
 'UPDATE task SET file_name="$filename" WHERE task_id="$taskId";'
);
}

20

Injection vulnerabilities
import 'dart:io';
import 'package:sqflite_common/sqlite_api.dart';

void updateTask(Database db, Int taskId, String fileName) async {
 await db.execute(
 'UPDATE task SET file_name="$filename" WHERE task_id="$taskId";'
);
}

// 💀

updateTask(db, 'whatever", url="https://evil.com" where 1 = 1 ;--');

21

Injection vulnerabilities
• Identify sources of external inputs
• Reject/verify/sanitize input data
• Special care necessary for APIs related to

• Serialization
• Dynamic code loading/execution
• Databases
• Filesystem interaction
• LLM prompts

22

Tamper resistant ≠ vulnerability-free

23

Automated security testing

24

Runtime tampering
• Inline hooking (patching function prologues)
• Direct patching of function bodies
• Hook Flutter VM
• Tamper with Java/Swift parts of the app
• …

25

Repackaging attacks

26

Typical repackaging approach

27

Typical repackaging approach
1.Unpack bundle

27

Typical repackaging approach
1.Unpack bundle
2.Modify binaries and/or resources

• Patch out security checks
• Remove paywall restrictions
• Add custom features
• Remove ads
• Alter AndroidManifest.xml/Info.plist
• …

27

Typical repackaging approach
1.Unpack bundle
2.Modify binaries and/or resources

• Patch out security checks
• Remove paywall restrictions
• Add custom features
• Remove ads
• Alter AndroidManifest.xml/Info.plist
• …

3.Re-zip and re-sign bundle

27

Typical repackaging approach
1.Unpack bundle
2.Modify binaries and/or resources

• Patch out security checks
• Remove paywall restrictions
• Add custom features
• Remove ads
• Alter AndroidManifest.xml/Info.plist
• …

3.Re-zip and re-sign bundle
4.Distribute and install app

27

Runtime app self-protection

28

Multi-layered protection strategy

29

Monitoring threats

Mobile app

Local security reaction

 THREATS.

 THREATS.

Process & store

30

Conclusion

31

Conclusion
• Be aware of what you ship

31

Conclusion
• Be aware of what you ship
• What is your attacker model?

31

Conclusion
• Be aware of what you ship
• What is your attacker model?
• Take a holistic approach to security

31

Conclusion
• Be aware of what you ship
• What is your attacker model?
• Take a holistic approach to security
• Integrate security aspects into your CI setup

31

Conclusion
• Be aware of what you ship
• What is your attacker model?
• Take a holistic approach to security
• Integrate security aspects into your CI setup
• Flutter apps are as (in)secure as regular apps

31

Thank you!

+

www.guardsquare.com

